Tuesday, 30 December 2014

Web Data Scraping Services Have Various Method Of Business

Magnetic or optical data removal or Data Scraping Services is a term that refers to the elimination of digital storage media. Data Scraping Services of the method varies, depending on medium and method used in the process.

Similarly, patents, models, business strategies and other confidential business information, including sensitive data, can be easily accessed by others if the data is not deleted.As I said in the beginning, Data Scraping Services methods vary depending on the storage medium. For each storage medium, there are a variety of Data Scraping Services techniques.

Optical media such as  that can be destroyed by the plastic granulating. This method does not extract information, but makes recovery almost impossible. However, removal of thin film that coats the top of the disk, scraping, sanding by hand or destroy physical data. In contrast, using the microwave, a less traditional technologies, stable and disk storage layer of the thin film is very effective for the most common cause sparks to load.

Typical modern magnetic media and hard drives, tape backup units of such media is possible, but in the face of such devices requires considerable financial investment in the plant. Acids, in particular, nitric acid, 50% concentration in the iron oxide layer to react with violence, it will be completely destroyed within a few minute. In some cases it may be a storage alternative for incineration. However, this may inadvertently expose caseinogens operator and may be restricted in certain countries.

Data Scraping Services, on the other hand, is defined by Wikipedia as "an automatic search for large stores of data for patterns of practice." In other words, you already know, and you learn things about it useful analysis.

Data Scraping Services is often accompanied by a lot of complex algorithms based on statistical methods. How do you see the data in the first place - is not. Data Scraping Services analysis, you only care about what is already there in many cases, a single-pass binary wipe (to write random zeroes and ones riding) will permanently deletes all data from the storage device to remove.

use of materials recovery.
It is for this reason that the technology has been left until last.
Data Scraping Services, screen scraping is not.
This is a great simplification, so I will work a bit.

Fast-forwarding to the web world today, screen scraping is the information relates to websites. This means that computer programs "crawl" or can "spider" through web sites, data retrieval. people, We deserved pages, text data Scraping Services, automated data collection, data extraction and web site even bloody website if we have a problem it presents some.

Data Scraping Services, on the other hand, is defined by Wikipedia as "an automatic search for large stores of data for patterns of practice." In other words, you already know, and you learn things about it useful analysis. Data Scraping Services is often accompanied by a lot of complex algorithms based on statistical methods. How do you see the data in the first place - is not. Data Scraping Services analysis, you only care about what is already there.

Source:http://www.articlesbase.com/outsourcing-articles/web-data-scraping-services-have-various-method-of-business-5594515.html

Monday, 29 December 2014

Scraping By

In his classic 1976 Chesapeake portrait, Beautiful Swimmers, William Warner described the scrape boat as "a workboat unlike any other I had ever seen on the Bay." Seeming half as wide as it was long, he said, it looked like a "a miniature battleship." There's a reason for that, of course. It's a classic case of form following function; the boat evolved for one purpose, to ply the Bay's grassy shallows for shedding blue crabs.

Said to "float on a heavy dew," scrape boats run from 26 to 30 feet long and 9 to 10 feet wide. The hull is a shallow-V deadrise that quickly flattens toward the stern, enabling the boat to pull its twin scrapes—rectangular steel frames, each with a trailing mesh bag—in knee-deep waters. The broad beam might sound ungainly, but the hull tapers toward the stern—betraying its sailboat origins. And it has a graceful sheer, flowing from a bow height of a few feet to little more than a foot above the water amidships.

And you want a low freeboard when you spend the whole day hoisting aboard scrapes, which weigh 50 pounds apiece, not including the load of sea grass and crabs that come in too. Low sides or not, there's a higher than average inci-dence of back problems among scrape boat crabbers. They spend long days bending in precisely the position back doctors say puts undue pressure on the lower back as they sort through rolls of grasses to pluck out the peelers and softies. And that alone may be why crab potting is now the far more common way of catching soft crabs.

Some people think that's good, assuming that dragging a scrape across the Bay's beleaguered grass flats must be destructive. But the smooth bar of the scrape, unlike a toothed dredge, doesn't uproot grasses. In fact, where scraping is traditional, the grass beds seem relatively resilient. I've often thought if Maryland and Virginia had stuck with scraping as the major legal way to soft-crab, overfishing might not have become a problem. Pots can be deployed everywhere and by the thousands, whereas scraping is limited to grass beds and to ground covered at three miles per hour; and even the sturdiest waterman can only pull two of them by hand. But peeler pots seem here to stay, and other soft crabbers have taken to using a single, large scrape operated from larger workboats by hydraulic power.

The bottom line is that these lovely, superbly functional expressions of Chesapeake crabbing culture now number only in the dozens, if you count working, wooden models. There are some fiberglass scrape boat hulls in service, and a Carolina skiff or two has been adapted for the task. They are functional, but have little art to them.

It is probably a sign of how fast scrape boats are going that the Smithsonian Institution recently took the lines off Darlene, a scraper worked by Morris Marsh of Smith Island, for its archives. You can see photos of scrape boats, and learn more about the 140-year old history of scraping, from Paula Johnson's fine book, The Workboats of Smith Island. Mr. Marsh, still going strong in his late 60s, is the scraper who took Warner out nearly 40 years ago when he was researching Beautiful Swimmers.

Indeed, scraping seems to win over those who master it. Marsh's father-in-law, Ed Harrison, scraped for almost 70 years, nearly wearing through the cross-planked bottom of his boat—from the inside—with decades of walking the planks, tending his scrapes. And an islander who scrapes with Marsh today, David Laird, says he is 71—one year younger than Scotty Boy, the scrape boat he took over from his dad in 1958. "I wouldn't even know how to crab in another boat," Laird says.

Soft crabs may well be caught—or farmed—a century from now on the Chesapeake; but no one will devise a way to take them so intimately and beautifully from the shallowest marsh edges and tiniest crevices in the shore as the scrapers do.

Source:http://www.articlesbase.com/culture-articles/scraping-by-1560919.html

Thursday, 25 December 2014

Choose Mining Wear Parts Wisely

It is important to choose a reputable supplier of mining wear parts; one that has been acknowledged as a leader in mining expertise. You will want to research and seek out a company that specializes in the engineering, manufacturing, procurement and design of mining wear parts and who has access to a multitude of patterns and templates to choose from.

It is vital to find a company that invites you to put them to the test; a company that is committed to selling more than just a product, standing behind the parts that they design and manufacture with an unprecedented industry guarantee. Some companies are so confident in their products that each wear part is stamped with their logo, identifying it as a superior product.

You will also want to find a company that takes pride in establishing strong customer relationships and who employs people who are as equally committed to providing outstanding service with customer satisfaction a priority. Your research will help you find a mining wear parts company that guarantees that if they do not have the part available, that they will find it for you or are capable of custom designing products to your exact specifications.

If you stop to consider the ramifications of an equipment malfunction or breakdown on production quotas, the significance of reliable parts becomes readily apparent. The impact can be far reaching if it halts production while the necessary repairs are completed. The ugly reality is that downtime incurs financial losses.

While the cost of aftermarket replacement mining wear parts is one factor, the installation of the part is equally as important. It is vital that aftermarket parts are built to a rugged standard to endure the rigorous industrial demands placed on them. Mining wear parts are routinely subjected to high stress abrasion and impact. The fabricated parts need to have the structural strength to be wear resistant with extended usage. Hardened manganese is the preferred material of choice to impart added strength and avoid premature breakage and replacement. Using inferior quality parts may result in the necessity of replacing them prematurely if they do not withstand the wear and tear that they are subjected to daily. While a few dollars may be saved initially by purchasing inferior mining wear parts, production costs can dramatically increase if frequent breakdowns occur and manpower hours are wasted in the field. Efficient use of manpower is an important budget consideration. Reliability is an absolute necessity w
hen you have production deadlines to meet and operations can quickly grind to a standstill when production is halted.

Quality assurance management monitors the consistency of the parts, demanding that they are machined within precise measurements. In addition, they focus on striving to improve the quality of parts as new technology becomes available. Using precision made, high quality wear parts can make your business more competitive, giving you an advantage and improving your bottom line.

Source:http://ezinearticles.com/?Choose-Mining-Wear-Parts-Wisely&id=6691631

Monday, 22 December 2014

Scraping table from any web page with R or CloudStat

Scraping table from any web page with R or CloudStat:

You need to use the data from internet, but don’t type, you can just extract or scrape them if you know the web URL.

Thanks to XML package from R. It provides amazing readHTMLtable() function.

For a study case,

I want to scrape data:

    US Airline Customer Score.
    World Top Chess Players (Men).

A. Scraping US Airline Customer Score table from

http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Airlines

Code:

airline = ‘http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Airlines’

airline.table = readHTMLTable(airline, header=T, which=1,stringsAsFactors=F)

Result:

> library(XML)

Warning message:

package "XML" was built under R version 2.14.1

> airline = "http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Airlines"

> airline.table = readHTMLTable(airline, header=T, which=1,stringsAsFactors=F)

> airline.table

                     Base-line 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

1          Southwest        78 76 76 76 74 72 70 70 74 75 73 74 74 76 79 81 79
2         All Others        NM 70 74 70 62 67 63 64 72 74 73 74 74 75 75 77 75
3           Airlines        72 69 69 67 65 63 63 61 66 67 66 66 65 63 62 64 66
4        Continental        67 64 66 64 66 64 62 67 68 68 67 70 67 69 62 68 71
5           American        70 71 71 62 67 64 63 62 63 67 66 64 62 60 62 60 63
6             United        71 67 70 68 65 62 62 59 64 63 64 61 63 56 56 56 60
7         US Airways        72 67 66 68 65 61 62 60 63 64 62 57 62 61 54 59 62
8              Delta        77 72 67 69 65 68 66 61 66 67 67 65 64 59 60 64 62
9 Northwest Airlines        69 71 67 64 63 53 62 56 65 64 64 64 61 61 57 57 61
  11 PreviousYear%Change FirstYear%Change
1 81                 2.5              3.8
3 65                -1.5             -9.7
4 64                -9.9             -4.5
5 63                 0.0            -10.0
7 61                -1.6            -15.3
8 56                -9.7            -27.3
9  #                 N/A              N/A

>

B. Scraping World Top Chess players (Men) table from http://ratings.fide.com/top.phtml?list=men

Code:

chess = ‘http://ratings.fide.com/top.phtml?list=men’

chess.table = readHTMLTable(chess, header=T, which=5,stringsAsFactors=F)

Result:

> chess = "http://ratings.fide.com/top.phtml?list=men"

> chess.table = readHTMLTable(chess, header=T, which=5,stringsAsFactors=F)

> chess.table

     Rank                       Name Title Country Rating Games B-Year

1      1           Carlsen, Magnus    g    NOR  2835   17  1990
2      2            Aronian, Levon    g    ARM  2805   25  1982
3      3         Kramnik, Vladimir    g    RUS  2801   17  1975
4      4        Anand, Viswanathan    g    IND  2799   17  1969
5      5         Radjabov, Teimour    g    AZE  2773    9  1987
6      6          Topalov, Veselin    g    BUL  2770    9  1975
7      7          Karjakin, Sergey    g    RUS  2769   16  1990
8      8         Ivanchuk, Vassily    g    UKR  2766   16  1969
9      9     Morozevich, Alexander    g    RUS  2763    6  1977
10    10           Gashimov, Vugar    g    AZE  2761    9  1986
11    11       Grischuk, Alexander    g    RUS  2761    8  1983
12    12          Nakamura, Hikaru    g    USA  2759   17  1987
13    13            Svidler, Peter    g    RUS  2749   17  1976
14    14    Mamedyarov, Shakhriyar    g    AZE  2747    9  1985
15    15       Tomashevsky, Evgeny    g    RUS  2740    0  1987
16    16            Gelfand, Boris    g    ISR  2739    9  1968
17    17          Caruana, Fabiano    g    ITA  2736   19  1992
18    18       Nepomniachtchi, Ian    g    RUS  2735   16  1990
19    19                 Wang, Hao    g    CHN  2733    6  1989
20    20              Kamsky, Gata    g    USA  2732    0  1974
21    21  Dominguez Perez, Leinier    g    CUB  2730    6  1983
22    22         Jakovenko, Dmitry    g    RUS  2729    0  1983
23    23        Ponomariov, Ruslan    g    UKR  2727   13  1983
24    24          Vitiugov, Nikita    g    RUS  2726    1  1987
25    25            Adams, Michael    g    ENG  2724   17  1971
26    26               Leko, Peter    g    HUN  2720    9  1979
27    27            Almasi, Zoltan    g    HUN  2717    8  1976
28    28               Giri, Anish    g    NED  2714   15  1994
29    29            Le, Quang Liem    g    VIE  2714    0  1991
30    30             Navara, David    g    CZE  2712    8  1985
31    31            Shirov, Alexei    g    LAT  2710   13  1972
32    32             Polgar, Judit    g    HUN  2710    0  1976
33    33     Riazantsev, Alexander    g    RUS  2710    0  1985
34    34       Wojtaszek, Radoslaw    g    POL  2706    8  1987
35    35      Moiseenko, Alexander    g    UKR  2706    7  1980
36    36   Vallejo Pons, Francisco    g    ESP  2705   15  1982
37    37        Malakhov, Vladimir    g    RUS  2705    0  1980
38    38            Jobava, Baadur    g    GEO  2704   23  1983
39    39           Bacrot, Etienne    g    FRA  2704   14  1983
40    40          Laznicka, Viktor    g    CZE  2704    8  1988
41    41            Sutovsky, Emil    g    ISR  2703    8  1977
42    42        Naiditsch, Arkadij    g    GER  2702   14  1985
43    43         Movsesian, Sergei    g    ARM  2700    9  1978
44    44       Sasikiran, Krishnan    g    IND  2700    9  1981
45    45   Vachier-Lagrave, Maxime    g    FRA  2699   13  1990
46    46            Dreev, Aleksey    g    RUS  2698    6  1969
47    47           Efimenko, Zahar    g    UKR  2695    8  1985
48    48         Volokitin, Andrei    g    UKR  2695    0  1986
49    49                 Wang, Yue    g    CHN  2694    6  1987
50    50        Fressinet, Laurent    g    FRA  2693   17  1981
51    51                Li, Chao b    g    CHN  2693    6  1989
52    52            Grachev, Boris    g    RUS  2693    0  1986
53    53      Nielsen, Peter Heine    g    DEN  2693    0  1973
54    54            Van Wely, Loek    g    NED  2692   13  1972
55    55    Bruzon Batista, Lazaro    g    CUB  2691   19  1982
56    56           McShane, Luke J    g    ENG  2691    8  1984
57    57            Eljanov, Pavel    g    UKR  2690   10  1983
58    58      Kasimdzhanov, Rustam    g    UZB  2689   14  1979
59    59         Inarkiev, Ernesto    g    RUS  2689    6  1985
60    60         Zvjaginsev, Vadim    g    RUS  2688    8  1976
61    61         Andreikin, Dmitry    g    RUS  2688    0  1990
62    62    Areshchenko, Alexander    g    UKR  2688    0  1986
63    63         Rublevsky, Sergei    g    RUS  2686    0  1974
64    64         Akopian, Vladimir    g    ARM  2685    8  1971
65    65          Potkin, Vladimir    g    RUS  2684    0  1982
66    66       Sargissian, Gabriel    g    ARM  2683   15  1983
67    67            Berkes, Ferenc    g    HUN  2682   16  1985
68    68           Bologan, Viktor    g    MDA  2680   15  1971
69    69          Bauer, Christian    g    FRA  2679   24  1977
70    70          Tiviakov, Sergei    g    NED  2677   22  1973
71    71            Short, Nigel D    g    ENG  2677   15  1965
72    72        Motylev, Alexander    g    RUS  2677    6  1979
73    73         Gharamian, Tigran    g    FRA  2676    0  1984
74    74          Kobalia, Mikhail    g    RUS  2673    0  1978
75    75              Meier, Georg    g    GER  2671    9  1987
76    76       Onischuk, Alexander    g    USA  2670   13  1975
77    77              Bu, Xiangzhi    g    CHN  2670    6  1985
78    78          Alekseev, Evgeny    g    RUS  2670    0  1985
79    79            Azarov, Sergei    g    BLR  2667    0  1983
80    80        Kryvoruchko, Yuriy    g    UKR  2666    0  1986
81    81             Balogh, Csaba    g    HUN  2665    8  1987
82    82           Harikrishna, P.    g    IND  2665    6  1986
83    83       Khismatullin, Denis    g    RUS  2664    8  1984
84    84   Nguyen, Ngoc Truong Son    g    VIE  2662    6  1990
85    85           Fridman, Daniel    g    GER  2660   11  1976
86    86              Smirin, Ilia    g    ISR  2660    7  1968
87    87               Ding, Liren    g    CHN  2660    6  1992
88    88         Sadler, Matthew D    g    ENG  2660    3  1974
89    89            Korobov, Anton    g    UKR  2660    0  1985
90    90          Cheparinov, Ivan    g    BUL  2659   18  1986
91    91          Timofeev, Artyom    g    RUS  2659    0  1985
92    92           Georgiev, Kiril    g    BUL  2658   17  1965
93    93           Bartel, Mateusz    g    POL  2658    9  1985
94    94          Zhigalko, Sergei    g    BLR  2658    8  1989
95    95         Feller, Sebastien    g    FRA  2658    0  1991
96    96            Ragger, Markus    g    AUT  2655   17  1988
97    97         Jones, Gawain C B    g    ENG  2653   27  1987
98    98                So, Wesley    g    PHI  2653    5  1993
99    99              Milov, Vadim    g    SUI  2653    0  1972
100  100           Gupta, Abhijeet    g    IND  2652    9  1989
101  101            Postny, Evgeny    g    ISR  2652    8  1981
102  102             Roiz, Michael    g    ISR  2652    6  1983
103  103           Gyimesi, Zoltan    g    HUN  2652    4  1977
104  104          Nikolic, Predrag    g    BIH  2652    2  1960

>

Done. You had successfully scraping data from any web page with R or CloudStat.

Then, you can analyze as usual! Great! No more retype the data. Enjoy!

Source: http://www.r-bloggers.com/scraping-table-from-any-web-page-with-r-or-cloudstat/

Friday, 19 December 2014

Extracting Wisdom Teeth Tips

It is believed that due to evolution, our jaws are now smaller than our ancient ancestors'. For this reason, our mouths often do not have adequate room to accommodate the third molars, making them basically useless and in some cases detrimental. Even if they are not impacted, wisdom teeth may be hard to clean, and therefore require removal to reduce the probability of caries and infection.

As part of your routine dental visits, your dentist will likely take X-rays to monitor the development of your third molars. Your dentist will likely recommend removing them as soon as possible to avoid any complications. The extraction of wisdom teeth can sometimes be a costly and daunting procedure; for these reasons many patients delay having them extracted. However, if the impacted teeth become infected, it is important to see your dental professional at once. Symptoms of infection due to impacted wisdom teeth include;

•    Pain in the gums and surrounding areas
•    Red or inflamed gums
•    Tender or bleeding gums
•    Inflammation around the face and jaw
•    Bad breath (halitosis)
•    Frequent headaches

If a single molar needs to be extracted, local anesthetic will be used. In the case where several or all the teeth need extraction, the patient will usually be "put under" using a general anesthetic. If you have an infection or medical complications that put you at a higher than normal risk, the surgery may be performed at a hospital. Extraction of the wisdom teeth is a day surgery, and patients are usually able to return to normal activities in a day or so. You may be prescribed antibiotics prior to the surgery, and you will likely be asked not to eat or drink the night before the surgery.

During the surgery, your dentist makes an incision in the gum tissue covering the tooth. Once the tooth is exposed, the dentist may cut the tooth into smaller pieces to make extraction easier. After the extraction you will be given stitches to mend the gum tissue. You may need to return a few days later to have the stitches removed. You will be monitored after the surgery to ensure that you are not bleeding excessively.

The best time for extraction is when the patient is in their late teens to avoid unnecessary complications. Wisdom teeth extractions performed later in life are still beneficial, but the removal may be more difficult and healing may take longer. Therefore it is wise to have a conversation with your dentist regarding your wisdom teeth as early as possible.

Most people will experience the emergence of their wisdom teeth at some point in their life, and extraction is sometimes necessary as a preventative measure or to fix an actual problem or to prevent problem. It is best to deal with any problems regarding your wisdom teeth as soon as possible to avoid unnecessary difficulties.

Source:http://ezinearticles.com/?Extracting-Wisdom-Teeth-Tips&id=7788863

Wednesday, 17 December 2014

Importance of Data Mining Services in Business

Data mining is used in re-establishment of hidden information of the data of the algorithms. It helps to extract the useful information starting from the data, which can be useful to make practical interpretations for the decision making.

It can be technically defined as automated extraction of hidden information of great databases for the predictive analysis. In other words, it is the retrieval of useful information from large masses of data, which is also presented in an analyzed form for specific decision-making. Although data mining is a relatively new term, the technology is not. It is thus also known as Knowledge discovery in databases since it grip searching for implied information in large databases.

It is primarily used today by companies with a strong customer focus - retail, financial, communication and marketing organizations. It is having lot of importance because of its huge applicability. It is being used increasingly in business applications for understanding and then predicting valuable data, like consumer buying actions and buying tendency, profiles of customers, industry analysis, etc. It is used in several applications like market research, consumer behavior, direct marketing, bioinformatics, genetics, text analysis, e-commerce, customer relationship management and financial services.

However, the use of some advanced technologies makes it a decision making tool as well. It is used in market research, industry research and for competitor analysis. It has applications in major industries like direct marketing, e-commerce, customer relationship management, scientific tests, genetics, financial services and utilities.

Data mining consists of major elements:

•    Extract and load operation data onto the data store system.
•    Store and manage the data in a multidimensional database system.
•    Provide data access to business analysts and information technology professionals.
•    Analyze the data by application software.
•    Present the data in a useful format, such as a graph or table.

The use of data mining in business makes the data more related in application. There are several kinds of data mining: text mining, web mining, relational databases, graphic data mining, audio mining and video mining, which are all used in business intelligence applications. Data mining software is used to analyze consumer data and trends in banking as well as many other industries.

Source:http://ezinearticles.com/?Importance-of-Data-Mining-Services-in-Business&id=2601221

Tuesday, 16 December 2014

Autoscraping casts a wider net

We have recently started letting more users into the private beta for our Autoscraping service. We’re receiving a lot of applications following the shutdown of Needlebase and we’re increasing our capacity to accommodate these users.

Natalia made a screencast to help our new users get started:

It’s also a great introduction to what this service can do.

We released slybot as an open source integration of the scrapely extraction library and the scrapy framework. This is the core technology behind the autoscraping service and we will make it easy to export autoscraping spiders from Scrapinghub  and run them completely with slybot – allowing our users to have the flexibility and freedom provided by open source.

Source:http://blog.scrapinghub.com/2012/02/27/autoscraping-casts-a-wider-net/

Sunday, 14 December 2014

Local ScraperWiki Library

It quite annoyed me that you can only use the scraperwiki library on a ScraperWiki instance; most of it could work fine elsewhere. So I’ve pulled it out (well, for Python at least) so you can use it offline.

How to use
pip install scraperwiki_local
A dump truck dumping its payload

You can then import scraperwiki in scripts run on your local computer. The scraperwiki.sqlite component is powered by DumpTruck, which you can optionally install independently of scraperwiki_local.

pip install dumptruck
Differences

DumpTruck works a bit differently from (and better than) the hosted ScraperWiki library, but the change shouldn’t break much existing code. To give you an idea of the ways they differ, here are two examples:

Complex cell values
What happens if you do this?
import scraperwiki
shopping_list = ['carrots', 'orange juice', 'chainsaw']
scraperwiki.sqlite.save([], {'shopping_list': shopping_list})
On a ScraperWiki server, shopping_list is converted to its unicode representation, which looks like this:
[u'carrots', u'orange juice', u'chainsaw']
In the local version, it is encoded to JSON, so it looks like this:
["carrots","orange juice","chainsaw"]


And if it can’t be encoded to JSON, you get an error. And when you retrieve it, it comes back as a list rather than as a string.

Case-insensitive column names
SQL is less sensitive to case than Python. The following code works fine in both versions of the library.

In [1]: shopping_list = ['carrots', 'orange juice', 'chainsaw']
In [2]: scraperwiki.sqlite.save([], {'shopping_list': shopping_list})
In [3]: scraperwiki.sqlite.save([], {'sHOpPiNg_liST': shopping_list})
In [4]: scraperwiki.sqlite.select('* from swdata')

Out[4]: [{u'shopping_list': [u'carrots', u'orange juice', u'chainsaw']}, {u'shopping_list': [u'carrots', u'orange juice', u'chainsaw']}]

Note that the key in the returned data is ‘shopping_list’ and not ‘sHOpPiNg_liST’; the database uses the first one that was sent. Now let’s retrieve the individual cell values.

In [5]: data = scraperwiki.sqlite.select('* from swdata')
In [6]: print([row['shopping_list'] for row in data])
Out[6]: [[u'carrots', u'orange juice', u'chainsaw'], [u'carrots', u'orange juice', u'chainsaw']]

The code above works in both versions of the library, but the code below only works in the local version; it raises a KeyError on the hosted version.

In [7]: print(data[0]['Shopping_List'])
Out[7]: [u'carrots', u'orange juice', u'chainsaw']

Here’s why. In the hosted version, scraperwiki.sqlite.select returns a list of ordinary dictionaries. In the local version, scraperwiki.sqlite.select returns a list of special dictionaries that have case-insensitive keys.

Develop locally

Here’s a start at developing ScraperWiki scripts locally, with whatever coding environment you are used to. For a lot of things, the local library will do the same thing as the hosted. For another lot of things, there will be differences and the differences won’t matter.

If you want to develop locally (just Python for now), you can use the local library and then move your script to a ScraperWiki script when you’ve finished developing it (perhaps using Thom Neale’s ScraperWiki scraper). Or you could just run it somewhere else, like your own computer or web server. Enjoy!

Source:https://blog.scraperwiki.com/2012/06/local-scraperwiki-library/

Monday, 8 December 2014

The Hubcast #4: A Guide to Boston, Scraping Local Leads, & Designers.Hubspot.com

The Hubcast Podcast Episode 004

Welcome back to The Hubcast folks! As mentioned last week, this will be a weekly podcast all about HubSpot news, tips, and tricks. Please also note the extensive show notes below including some new HubSpot video tutorials created by George Thomas.

Show Notes:

Inbound 2014

THE INSIDER’S GUIDE TO BOSTON

Boston Guide

On September 15-18, the Boston Convention & Exhibition Center will be filled with sales and marketing professionals for INBOUND 2014. Whether this will be your first time visiting Boston, you’ve visited Boston in the past, or you’ve lived in the city for years, The Insider’s Guide to Boston is your go-to guide for enjoying everything the city has to offer. Click on a persona below to get started.

Are you the The Brewmaster – The Workaholic – The Chillaxer?

Check out the guide here

HubSpot Tips & Tricks

Prospects Tool – Scrape Local Leads
Prospects Tool


This weeks tip / trick is how to silence some of the noise in your prospect tool. Sometimes you might have need to just look at local leads for calls or drop offs. We show you how to do that and much more with the HubSpot Prospects Tool.

Watch the tutorial here

HubSpot Strategy
Crack down on your sites copy.


We talk about how your home page and about pages are talking to your potential customers in all the wrong ways. Are you the me, me, me person at the digital party? Or are you letting people know how their problems can be solved by your products or services.

HubSpot Updates
(Each week on the Hubcast, George and Marcus will be looking at HubSpot’s newest updates to their software. And in this particular episode, we’ll be discussing 2 of their newest updates)
Default Contact Properties

You can now choose a default option on contact properties that sets a default value for that property that can be applied across your entire contacts database. When creating or editing a new contact property in Contacts Settings, you’ll see a new default option next to the labels on properties with field types “Dropdown,” “Radio Select” and “Single On/Off Checkbox”.

Default Contact Properties

When you set a contact property as “default”, all contacts who don’t have any value set for this property will adopt the default value you’ve selected. In the example above, we’re creating a property to track whether your contact uses a new feature. Initially, all of them would be “No,” and that’s the default property that will be applied database-wide. As a result, this’ll get stamped on each contact record the value wasn’t present on.

Now, when you want to apply a contact property across multiple contacts, you don’t have to create a list of those contacts and then create a workflow that stamps that contact property across those contacts. This new feature allows you to bypass those steps by using the “default” option on new contact properties you create.

Watch the tutorial here
RSS Module with Images


Now available is a new option within modules in the template builder that will allow you to easily add a featured image to an RSS module. This module will show a blog post’s featured image next to the feed of recent blog content. If you are a marketer, all you need to do is simply check the “Featured Image” box off in the RSS Listing module to display a list of recent COS blog posts with images on any page. No developers or code necessary to do this!

If you are a designer and want to add additional styling to an RSS module with images, you can do so using HubL tokens.

Here is documentation on how to get started.

Default Contact Properties
Watch the tutorial here

HubSpot Wishlist

 The HubSpot Keywords Tool


Why oh why!!!! Hubspot why can we only have 1,000 keywords in our keywords tool? We talk about how for many companies a 1,000 keywords dont just cut it. For example Yale applaince can easily blow through those keywords.

Source: http://www.thesaleslion.com/hubcast-podcast-004/

Monday, 1 December 2014

Web Scraping’s 2013 Review – part 2

As promised we came back with the second part of this year’s web scraping review. Today we will focus not only on events of 2013 that regarded web scraping but also Big data and what this year meant for this concept.

First of all, we could not talked about the conferences in which data mining was involved without talking about TED conferences. This year the speakers focused on the power of data analysis to help medicine and to prevent possible crises in third world countries. Regarding data mining, everyone agreed that this is one of the best ways to obtain virtual data.

Also a study by MeriTalk  a government IT networking group, ordered by NetApp showed this year that companies are not prepared to receive the informational revolution. The survey found that state and local IT pros are struggling to keep up with data demands. Just 59% of state and local agencies are analyzing the data they collect and less than half are using it to make strategic decisions. State and local agencies estimate that they have just 46% of the data storage and access, 42% of the computing power, and 35% of the personnel they need to successfully leverage large data sets.

Some economists argue that it is often difficult to estimate the true value of new technologies, and that Big Data may already be delivering benefits that are uncounted in official economic statistics. Cat videos and television programs on Hulu, for example, produce pleasure for Web surfers — so shouldn’t economists find a way to value such intangible activity, whether or not it moves the needle of the gross domestic product?

We will end this article with some numbers about the sumptuous growth of data available on the internet.  There were 30 billion gigabytes of video, e-mails, Web transactions and business-to-business analytics in 2005. The total is expected to reach more than 20 times that figure in 2013, with off-the-charts increases to follow in the years ahead, according to researches conducted by Cisco, so as you can see we have good premises to believe that 2014 will be at least as good as 2013.

Source:http://thewebminer.com/blog/2013/12/